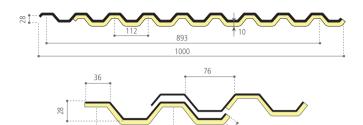


Caratteristiche


darattoriotiono				
Altezza profilo	28 mm + 10 mm di isolante			
Larghezza utile	893 mm			
Lunghezza minima / massima	1600 / 13200 mm			
Pendenza minima	7 %			
Peso indicativo Tek 28 in alluminio 0,6 mm	2,5 kg/m²			
Peso indicativo Tek 28 in acciaio 0,5 mm	5,8 kg/m²			
Lavorazioni	tacchettatura, deformazione controllata, overlapping			
Applicazioni opzionali lato interno	alluminio centesimale			
Utilizzo consigliato	copertura e rivestimenti			
Densità poliuretano	60 kg/m³			
Conduttività poliuretano λ	0,023 W/m K			
Spessore poliuretano	10 mm			
Supporto esterno	alluminio naturale, alluminio preverniciato, acciaio preverniciato, aluzinc, rame			
Trasmittanza termica U	2,30 W/m² k			
Classificazione al fuoco secondo UNI EN 13501-5:2009	BRoof (T3)			

Disegni e raffigurazioni puramente indicative

Acciain

Caratteristiche tecniche acciaio

S	, р Ј		W	EJ	M max	
[mm]	[kg/m²]	[cm ⁴ /m]	[cm³/m]	[kN cm²/m]	[kN cm/m]	
0,4	4,45	6,45	4,61	132.805	63,25	
0,5	5,36	7,68	3,58	158.162	57,95	
0,6	6,33	9,22	4,84	189.876	78,34	
0,7	7,31	10,76	6,27	221.591	101,49	
0,8	8,29	12,3	7,88	253.306	127,55	
1,0	10,24	15,38	11,19	316.735	181,13	

Simbologie

- s = spessore lamiera
- p = peso unitario
- I = momento di inerzia
- W = modulo di resist flessione
- EJ = rigidezza a flessione
- M max = momento flettente ammissibile
- (σ amm.= 13.73 kN/cm²)
- _ i = interasse appoggi
 - σ amm. = carico unitario di sicurezza
 - f amm. = deformazione massima ammissibile

Carico uniforme ammissibile [kg/m²] su 4 appoggi*

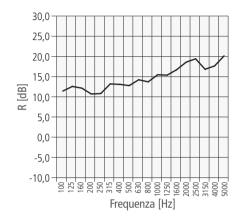
i [m]	1,	00	1,	25	1,	50	1,	75	2,	00	2,	25	2,	50	2,	75	3,	00
s [mm]	$\sigma_{_{amm}}$	$\boldsymbol{f}_{\mathrm{amm}}$																
0,4	418	866	255	428	183	239	143	143	112	87	81	56	66	36				
0,5	501	1032	321	528	223	306	164	193	126	129	99	91	80	66	66	50	56	38
0,6	678	1239	434	634	301	367	221	231	169	155	134	109	108	79	90	60	75	46
0,7	878	1446	562	740	390	428	287	270	219	181	173	127	140	93	116	70	98	54
0,8	1103	1653	706	846	490	490	360	308	276	207	218	145	177	106	146	79	123	61
1,0	1567	2067	1003	1058	696	612	512	386	392	258	309	181	251	132	207	99	174	76

^{*(}il calcolo è condotto nella doppia ipotesi di σ amm.= 1.400 kg/cm²=13,73 kN/cm² e di f amm. = i/200)

Il contenuto della presente tabella di calcolo e' da considerarsi di massima e con semplice valore indicativo. E' di competenza del progettista e/o utilizzatore procedere per i singoli casi di impiego al relativo calcolo strutturale nonché determinare le specifiche progettuali applicative del pacchetto di copertura.

Isolamento acustico per via aerea

Valutazione secondo la norma UNI EN ISO 140-3 2006


Frequenza	Potere fonoisolante		Gradi di libertà effettivi	Fattore di copertura	Livello di fiducia
[Hz]	[dB]				[%]
100	12,3	2,3	10,4	2,28	
125	13,4	1,4	11,8	2,25	
160	13,0	1,1	14,1	2,20	
200	11,6	1,0	11,2	2,25	
250	11,7	0,9	19,6	2,14	
315	14,0	0,8	16,5	2,17	
400	13,9	1,2	17,4	2,16	
500	13,6	1,3	11,0	2,25	
630	15,0	1,0	11,8	2,25	95,45
800	14,5	0,8	14,6	2,20	95,45
1000	16,2	0,6	14,6	2,20	
1250	16,1	0,5	14,9	2,20	
1600	17,4	0,4	12,1	2,23	
2000	19,2	0,3	16,1	2,17	
2500	20,0	0,2	18,2	2,15	
3150	17,5	0,2	12,5	2,23	
4000	18,3	0,3	11,6	2,25	
5000	20,7	0,2	12,5	2,23	

Isolamento acustico per via aerea

Valutazione secondo la norma UNI EN ISO 140-3 2006

Valutazione secondo la norma UNI EN ISO 717-1 1997

	Rw [dB]	С	Ctr
	17	-1	-2
Limite fiduciario inferiore ^{1 (1)}	16	0	-2
Limite fiduciario superiore ^{2 (2)}	17	0	-1

Rw indice di valutazione del potere fonoisolante: valore, in decibel, della curva di riferimento a 500 Hz dopo spostamento della curva secondo il metodo specificato nella parte prima della ISO 717.

¹ Valore determinato sottraendo, per ogni terzo d'ottava a R_{iesimo} il valore dell'incertezze estesa

² Valore determinato sommando, per ogni terzo d'ottava a R_{lacimo} il valore dell'incertezze estesa

⁽¹⁾ Grandezza al di fuori dell'accreditamento SINAL.

Livello rumore aereo da impatto

Frequenza	Livello medio campione A	Livello medio campione B	ΔL
[Hz]	[dB]	[dB]	[dB]
100	49,1	48,9	*
125	49,1	48,7	*
160	51,9	52,1	*
200	57,1	54,1	*
250	54,9	55,1	*
315	58,7	56,5	2,2
400	61,0	58,0	3,0
500	61,2	58,7	2,5
630	63,2	61,0	2,3
800	66,3	63,1	3,2
1000	67,5	64,3	3,2
1250	73,1	66,7	6,4
1600	75,0	68,5	6,5
2000	78,1	70,1	8,0
2500	77,7	74,3	3,4
3150	79,2	75,5	3,7
4000	75,0	75,6	-0,6
5000	76,7	72,7	4,0

^{*} Valore non riportato in quanto il rumore residuo, indotto nell'ambiente di misura dal sistema di generazione in funzione senza la proiezione dei proiettili, è equiparabile al livello generato dalla sollecitazione dei campioni.

Resistenza a flessione

Determinazione della resistenza alla flessione, sulla base della norma UNI EN ISO 178:2011, con provini di dimensioni 150 ± 1 cm (lunghezza), 44 ± 0.5 cm (larghezza) e spessore 28 ± 1 mm. I provini vengono posti su due appoggi paralleli a distanza uno dall'altro di 120cm, caricando la parte centrale del provino con carico puntuale, fino a cedimento del provino stesso. Il carico è stato applicato con barre di ferro da 5Kg ciascuna.

Campione	Resistenza a flessione
Alubel 28 in acciaio	200 ± 5
Tek 28 in acciaio	240 ± 5

Isolamento termico

Verifica dell'efficacia termica confrontando i due campioni posti in camera incubatrice, riscaldata con lampada alogena e misurando la differenza di temperatura fra la parte superiore ed inferiore dei campioni.

Campione	Temperatura al di sopra del campione	Temperatura al di sotto del campione	Differenza di temperatura
	[°C]	[°C]	[°C]
Alubel 28 in acciaio	80	26	54
Tek 28 in acciaio	80	22	58

